日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•北京)閱讀下面材料:
          小明遇到這樣一個(gè)問題:如圖1,在邊長(zhǎng)為a(a>2)的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當(dāng)∠AFQ=∠BGM=∠CHN=∠DEP=45°時(shí),求正方形MNPQ的面積.
          小明發(fā)現(xiàn),分別延長(zhǎng)QE,MF,NG,PH交FA,GB,HC,ED的延長(zhǎng)線于點(diǎn)R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四個(gè)全等的等腰直角三角形(如圖2)
          請(qǐng)回答:
          (1)若將上述四個(gè)等腰直角三角形拼成一個(gè)新的正方形(無(wú)縫隙不重疊),則這個(gè)新正方形的邊長(zhǎng)為
          a
          a

          (2)求正方形MNPQ的面積.
          (3)參考小明思考問題的方法,解決問題:
          如圖3,在等邊△ABC各邊上分別截取AD=BE=CF,再分別過點(diǎn)D,E,F(xiàn)作BC,AC,AB的垂線,得到等邊△RPQ.若S△RPQ=
          3
          3
          ,則AD的長(zhǎng)為
          2
          3
          2
          3

          分析:(1)四個(gè)等腰直角三角形的斜邊長(zhǎng)為a,其拼成的正方形面積為a2,邊長(zhǎng)為a;
          (2)如題圖2所示,正方形MNPQ的面積等于四個(gè)虛線小等腰直角三角形的面積之和,據(jù)此求出正方形MNPQ的面積;
          (3)參照小明的解題思路,對(duì)問題做同樣的等積變換.如答圖1所示,三個(gè)等腰三角形△RSF,△QET,△PDW的面積和等于等邊三角形△ABC的面積,故陰影三角形△PQR的面積等于三個(gè)虛線等腰三角形的面積之和.據(jù)此列方程求出AD的長(zhǎng)度.
          解答:解:(1)四個(gè)等腰直角三角形的斜邊長(zhǎng)為a,則斜邊上的高為
          1
          2
          a,
          每個(gè)等腰直角三角形的面積為:
          1
          2
          a•
          1
          2
          a=
          1
          4
          a2,
          則拼成的新正方形面積為:4×
          1
          4
          a2=a2,即與原正方形ABCD面積相等,
          ∴這個(gè)新正方形的邊長(zhǎng)為a;

          (2)∵四個(gè)等腰直角三角形的面積和為a2,正方形ABCD的面積為a2,
          ∴S正方形MNPQ=S△ARE+S△DWH+S△GCT+S△SBF=4S△ARE=4×
          1
          2
          ×12=2;

          (3)如答圖1所示,分別延長(zhǎng)RD,QF,PE,交FA,EC,DB的延長(zhǎng)線于點(diǎn)S,T,W.

          由題意易得:△RSF,△QET,△PDW均為底角是30°的等腰三角形,其底邊長(zhǎng)均等于△ABC的邊長(zhǎng).
          不妨設(shè)等邊三角形邊長(zhǎng)為a,則SF=AC=a.
          如答圖2所示,過點(diǎn)R作RM⊥SF于點(diǎn)M,則MF=
          1
          2
          SF=
          1
          2
          a,

          在Rt△RMF中,RM=MF•tan30°=
          1
          2
          3
          3
          =
          3
          6
          a,
          ∴S△RSF=
          1
          2
          a•
          3
          6
          a=
          3
          12
          a2
          過點(diǎn)A作AN⊥SD于點(diǎn)N,設(shè)AD=AS=x,
          則AN=AD•sin30°=
          1
          2
          x,SD=2ND=2ADcos30°=
          3
          x,
          ∴S△ADS=
          1
          2
          SD•AN=
          1
          2
          3
          x•
          1
          2
          x=
          3
          4
          x2
          ∵三個(gè)等腰三角形△RSF,△QET,△PDW的面積和=3S△RSF=3×
          3
          12
          a2=
          3
          4
          a2
          ∴S△RPQ=S△ADS+S△CFT+S△BEW=3S△ADS,
          3
          3
          =3×
          3
          4
          x2,得x2=
          4
          9
          ,
          解得x=
          2
          3
          或x=-
          2
          3
          (不合題意,舍去)
          ∴x=
          2
          3
          ,即AD的長(zhǎng)為
          2
          3

          故答案為:a;
          2
          3
          點(diǎn)評(píng):本題考查了幾何圖形的等積變換,涉及正方形、等腰直角三角形、等腰三角形、正三角形、解直角三角形等多個(gè)知識(shí)點(diǎn),是一道好題.通過本題我們可以體會(huì)到,運(yùn)用等積變換的數(shù)學(xué)思想,不僅簡(jiǎn)化了幾何計(jì)算,而且形象直觀,易于理解,體現(xiàn)了數(shù)學(xué)的魅力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          29、閱讀下表,完成后面問題(單位:萬(wàn)輛,1995年)
             國(guó)家     美國(guó) 日本     德國(guó)     法國(guó)
          汽車產(chǎn)量 1200 1020 470 350
          (1)這四個(gè)國(guó)家的汽車產(chǎn)量之比約是多少?
          (2)制作適當(dāng)?shù)慕y(tǒng)計(jì)圖來表示上表中的數(shù)據(jù).
          (3)請(qǐng)寫出兩條根據(jù)上面您所畫的統(tǒng)計(jì)圖得出的信息.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•張家界)閱讀材料:求1+2+22+23+24+…+22013的值.
          解:設(shè)S=1+2+22+23+24+…+22012+22013,將等式兩邊同時(shí)乘以2得:
             2S=2+22+23+24+25+…+22013+22014
             將下式減去上式得2S-S=22014-1
             即S=22014-1
             即1+2+22+23+24+…+22013=22014-1
          請(qǐng)你仿照此法計(jì)算:
          (1)1+2+22+23+24+…+210
          (2)1+3+32+33+34+…+3n(其中n為正整數(shù)).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•北京)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD.
          (1)如圖1,直接寫出∠ABD的大小(用含α的式子表示);
          (2)如圖2,∠BCE=150°,∠ABE=60°,判斷△ABE的形狀并加以證明;
          (3)在(2)的條件下,連接DE,若∠DEC=45°,求α的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•北京)在一個(gè)不透明的口袋中裝有5個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,5,從中隨機(jī)摸出一個(gè)小球,其標(biāo)號(hào)大于2的概率為( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案