日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形OP1A1B1,A1P2A2B2A2P3A3B3,……,An-1PnAnBn都是正方形,對角線OA1A1A2,A2A3,……,An-1An都在y軸上(n≥1的整數(shù)),點P1x1y1),P2x2,y2),……,Pnxn,yn)在反比例函數(shù)y=x0)的圖象上,并已知B1-1,1.

          1)求反比例函數(shù)y=的解析式;

          2)求點P2P3的坐標(biāo);

          3)由(1)、(2)的結(jié)果或規(guī)律試猜想并直接寫出:PnBnO的面積為 ,點Pn的坐標(biāo)為______(用含n的式子表示).

          【答案】1反比例函數(shù)的解析式為y=;(2)點P3的坐標(biāo)為(- +);(31,( -, +

          【解析】試題分析:1)由四邊形OP1A1B1為正方形且OA1是對角線知B1P1關(guān)于y軸對稱,得出點P11,1),據(jù)此可得答案;

          2)連接P2B2P3B3,分別交y軸于點EF,由點P1坐標(biāo)及正方形的性質(zhì)知OA1=2,據(jù)此可設(shè)P2的坐標(biāo)為(a,a+2),代入解析式求得a的值即可,同理可得點P3的坐標(biāo);

          3)由SP1B1O=2SP1CO=2×=1,SP2B2O=2SP2EO=2×=1可知PnBnO的面積為1,根據(jù)P11,1)、P2-1, +1)、P3- +)知點Pn的坐標(biāo)為-, + ).

          試題解析:(1)在正方形OP1A1B1中,OA1是對角線,則B1P1關(guān)于y軸對稱,又B1-1,1),

          P11,1),k=1.

          ∴反比例函數(shù)的解析式為y=.

          2)連接P2B2,P3B3分別交y軸于點E,點F又點P11,1),

          OA1=2,設(shè)點P2的坐標(biāo)為(a,a+2),將點P2a,a+2)代入y=x0),可得a=-1,故點P2的坐標(biāo)為(-1 +1);(4分)

          A1E=A2E=2-2,OA2=OA1+A1A2=2,

          設(shè)點P3的坐標(biāo)為(b,b+2 ),將P3的坐標(biāo)(b,b+2 )代入y=x0),可得b=-,故點P3的坐標(biāo)為(-, +);

          3SP1B1O=2SP1CO=2×=1SP2B2O=2SPaEO=2×=1

          PnBnO的面積為1,

          P1(1,1)P2(1, +1)P3(+)知點Pn的坐標(biāo)為- , +

          故答案為1,( - +

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC是等邊三角形,BD是中線,延長BCE,CE=CD,

          1)求證:DB=DE

          2)在圖中過DDFBEBEF,若CF=4,求ABC的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,沿AE折疊矩形,點D恰好落在BC邊上的點F處,已知AB=8cmBC=10cm,求EC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】李師傅要給-塊長9米,寬7米的長方形地面鋪瓷磚.如圖,現(xiàn)有AB兩種款式的瓷磚,且A款正方形瓷磚的邊長與B款長方形瓷磚的長相等, B款瓷磚的長大于寬.已知一塊A款瓷磚和-B款瓷磚的價格和為140; 3A款瓷磚價格和4B款瓷磚價格相等.請回答以下問題:

          (1)分別求出每款瓷磚的單價.

          (2)若李師傅買兩種瓷磚共花了1000 元,且A款瓷磚的數(shù)量比B款多,則兩種瓷磚各買了多少塊?

          (3)李師傅打算按如下設(shè)計圖的規(guī)律進行鋪瓷磚.A款瓷磚的用量比B款瓷磚的2倍少14塊,且恰好鋪滿地面,則B款瓷磚的長和寬分別為_ (直接寫出答案).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某小區(qū)準(zhǔn)備新建個停車位,以解決小區(qū)停車難的問題。已知新建個地上停車位和個地下停車位共需萬元:新建個地上停車位和個地下停車位共需萬元,

          1)該小區(qū)新建個地上停車位和個地下停車位各需多少萬元?

          2)若該小區(qū)新建車位的投資金額超過萬元而不超過萬元,問共有幾種建造方案?

          3)對(2)中的幾種建造方案中,哪種方案的投資最少?并求出最少投資金額.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水 3000 噸,計劃內(nèi)用水每噸收費 0.5元,超計劃部分每噸按 0.8 元收費.

          1)寫出該單位水費 y(元)與每月用水量 x(噸)之間的函數(shù)關(guān)系式:(寫出自變量取值范圍)

          用水量小于等于 3000 ;

          用水量大于 3000

          2)某月該單位用水 3200 噸,水費是 元;若用水 2800 噸,水費 元.

          3)若某月該單位繳納水費 1580 元,則該單位用水多少噸?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:∠ACB90°,ACBC,ADCM,BECM,垂足分別為D,E,

          1)如圖1,

          線段CDBE的數(shù)量關(guān)系是  ;

          請寫出線段AD,BEDE之間的數(shù)量關(guān)系并證明.

          2)如圖2,上述結(jié)論還成立嗎?如果不成立,請直接寫出線段ADBE,DE之間的數(shù)量關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在一次自行車越野賽中,甲乙兩名選手行駛的路程y(千米)隨時間x(分)變化的圖象(全程)如圖,根據(jù)圖象判定下列結(jié)論不正確的是( )

          A.甲先到達(dá)終點

          B.30分鐘,甲在乙的前面

          C.48分鐘時,兩人第一次相遇

          D.這次比賽的全程是28千米

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在4×4的正方格中,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上.

          (1)填空:∠ABC , BC= ;

          (2)判斷△ABC與△DEF是否相似,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案