日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點.
          (1)寫出點O到△ABC的三個頂點A、B、C的距離的大小關(guān)系.
          (2)如果點M、N分別在線段AB、AC上移動,移動中保持AN=BM,請判斷△OMN的形狀,并證明你的結(jié)論.
          (3)當(dāng)點M、N分別在AB、AC上運動時,四邊形AMON的面積是否發(fā)生變化?說明理由.
          分析:(1)由于△ABC是直角三角形,點O是BC的中點,根據(jù)直角三角形的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半,故有OA=OB=OC=
          1
          2
          BC;
          (2)由于OA是等腰直角三角形的斜邊上的中線,根據(jù)等腰直角三角形的性質(zhì)知,∠CAO=∠B=45°,OA=OB,又有AN=MB,所以由SAS證得△AON≌△BOM可得:ON=OM  ①∠NOA=∠MOB,于是有,∠NOM=∠AOB=90°,所以△OMN是等腰直角三角形.
          (3)由全等三角形的面積相等和圖中圖形間的面積關(guān)系得到:
          解答:解:(1)∵在Rt△ABC中,∠BAC=90°,O為BC的中點,
          ∴OA=
          1
          2
          BC=OB=OC,
          即OA=OB=OC;

          (2)△OMN是等腰直角三角形.理由如下:
          連接AO
          ∵AC=AB,OC=OB
          ∴OA=OB,∠NAO=∠B=45°,
          在△AON與△BOM中,
          AN=BM
           ∠NAO=∠B 
          OA=OB
          ,
          ∴△AON≌△BOM(SAS)
          ∴ON=OM,∠NOA=∠MOB
          ∴∠NOA+∠AOM=∠MOB+∠AOM
          ∴∠NOM=∠AOB=90°,
          ∴△OMN是等腰直角三角形;

          (3)當(dāng)點M、N分別在AB、AC上運動時,四邊形AMON的面積不發(fā)生變化.理由如下:
          M、N運動時始終有△AON≌△BOM,
          故S四邊形AMON=SAMO+SMBO=SABO=
          1
          2
          SABC
          點評:本題考查了直角三角形斜邊上中線,全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì),等腰直角三角形性質(zhì)等知識點的應(yīng)用,題目比較好,主要考查了學(xué)生運用定理進(jìn)行推理的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
          (1)求證:BC是⊙O的切線;
          (2)若CD=6,AC=8,求AE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
          (1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
          (2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
          (3)如果△CEF與△DEF相似,求AD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△ABC中,BD⊥AC,sinA=
          3
          5
          ,則cos∠CBD的值是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
          5
          cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
          (1)當(dāng)點P在線段DE上運動時,線段DP的長為
          (t-2)
          (t-2)
          cm,(用含t的代數(shù)式表示).
          (2)當(dāng)點N落在AB邊上時,求t的值.
          (3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

          查看答案和解析>>

          同步練習(xí)冊答案