日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 思考與推理
          如圖①,在矩形ABCD中,點E為CD的中點,連接AE并延長交BC的延長線于點F,過點E作EM⊥AF交BC于點M,連接AM,請思考并判斷AE與EF、∠1與∠2具有怎樣的數(shù)量關(guān)系?并推理說明你的判斷
          探究與應(yīng)用
          如圖②,在梯形ABCD中,點E為CD的中點,連接AE,過點E作EM⊥AE交BC于點M,連接AM.若∠EMC=70°,則∠DAE=________°.

          20
          分析:思考與推理:根據(jù)中點定義可得DE=CE,然后利用“角邊角”證明△ADE和△FCE全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=EF,全等三角形對角相等可得∠2=∠F,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AM=MF,根據(jù)等邊對等角可得∠1=∠F,從而求出∠1=∠2;
          探究與應(yīng)用:先求出∠AME=∠EMC,再根據(jù)直角三角形兩銳角互余求出∠EAM,然后根據(jù)∠DAE=∠EAM即可得解.
          解答:思考與推理:
          ∵點E為CD的中點,
          ∴DE=CE,
          在△ADE和△FCE中,
          ,
          ∴△ADE≌△FCE(ASA),
          ∴AE=EF,∠2=∠F,
          ∵EM⊥AF,
          ∴AM=MF,
          ∴∠1=∠F,
          ∴∠1=∠2;
          探究與應(yīng)用:∵∠EMC=70°,
          ∴∠AME=∠EMC=70°,
          ∵EM⊥AE,
          ∴∠EAM=90°-70°=20°,
          ∴∠DAE=∠EAM=20°.
          故答案為:20.
          點評:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),比較簡單,熟記性質(zhì)并找出三角形全等的條件是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•南關(guān)區(qū)模擬)思考與推理
          如圖①,在矩形ABCD中,點E為CD的中點,連接AE并延長交BC的延長線于點F,過點E作EM⊥AF交BC于點M,連接AM,請思考并判斷AE與EF、∠1與∠2具有怎樣的數(shù)量關(guān)系?并推理說明你的判斷
          探究與應(yīng)用
          如圖②,在梯形ABCD中,點E為CD的中點,連接AE,過點E作EM⊥AE交BC于點M,連接AM.若∠EMC=70°,則∠DAE=
          20
          20
          °.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀下面資料:
          小明遇到這樣一個問題:如圖1,對面積為a的△ABC逐次進(jìn)行以下操作:分別延長AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.
          小明是這樣思考和解決這個問題的:如圖2,連接A1C、B1A、C1B,因為A1B=2AB,B1C=2BC,C1A=2CA,根據(jù)等高兩三角形的面積比等于底之比,所以SA1BC=SB1CA=SC1AB=2S△ABC=2a,由此繼續(xù)推理,從而解決了這個問題.

          (1)直接寫出S1=
          19a
          19a
          (用含字母a的式子表示).
          請參考小明同學(xué)思考問題的方法,解決下列問題:
          (2)如圖3,P為△ABC內(nèi)一點,連接AP、BP、CP并延長分別交邊BC、AC、AB于點D、E、F,則把△ABC分成六個小三角形,其中四個小三角形面積已在圖上標(biāo)明,求△ABC的面積.
          (3)如圖4,若點P為△ABC的邊AB上的中線CF的中點,求S△APE與S△BPF的比值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:雙色筆記九年級數(shù)學(xué)(上) 題型:044

          閱讀與思考:

          (1)下面是課本中對平行四邊形判定定理4(一組對邊平行且相等的四邊形是平行四邊形)的證明,請邊閱讀,邊進(jìn)行推理填空,然后思考后面的問題.

          已知:如圖在四邊形ABCD中,AB∥CD,且AB=CD.

          求證:四邊形ABCD是平行四邊形.

          證明:連結(jié)AC.

          ∵AB∥CD(  ),

          ∴∠1=∠2(  ),

          又∵AB=CD(  ),AC=AC(  ),

          ∴△ABC≌△CDA(  ),

          ∴BC=AD,∴四邊形ABCD是平行四邊形(  )上面的證明是利用平行四邊形判定定理________完成的.在證明過程中,證明了△ABC≌△CDA,由此還可以推出∠B=________,同理可證∠A=________,可見,平行四邊形判定定理4也可以利用平行四邊形判定定理________來證明.在圖中再連結(jié)BD,設(shè)AC與BD相交于點O,則可以利用判定三角形全等的________公理證明△AOB≌△________,進(jìn)而推出AO=________,BO=________,這說明平行四邊形判定定理4也可以利用平行四邊形判定定理________來證明.

          (2)如果要畫平行四邊形ABCD,使∠B=,AB=2cm,BC=3cm,請回答下列問題:

          ①利用平行四邊形判定定理2畫所求的平行四邊形ABCD,在畫出AB、BC后,怎樣確定點D的位置?

          ②利用平行四邊形判定定理3畫所求的平行四邊形ABCD,應(yīng)按怎樣的步驟進(jìn)行?請寫出畫法.

          ③利用平行四邊形判定定理4畫所求的平行四邊形ABCD,在畫出AB、BC后,怎樣確定點D的位置?

          查看答案和解析>>

          同步練習(xí)冊答案