日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在矩形ABCD中,點(diǎn)E是AD的中點(diǎn),∠EBC的平分線交CD于點(diǎn)F,將△DEF沿EF折疊,點(diǎn)D恰好落在BE上M點(diǎn)處,延長(zhǎng)BC、EF交于點(diǎn)N.有下列四個(gè)結(jié)論:①DF=CF;②BF⊥EN;③△BEN是等邊三角形;④S△BEF=3S△DEF.其中,將正確結(jié)論的序號(hào)全部選對(duì)的是( )

          A.①②③
          B.①②④
          C.②③④
          D.①②③④
          【答案】分析:由折疊的性質(zhì)、矩形的性質(zhì)與角平分線的性質(zhì),可證得CF=FM=DF;
          易求得∠BFE=∠BFN,則可得BF⊥EN;
          易證得△BEN是等腰三角形,但無法判定是等邊三角形;
          易求得BM=2EM=2DE,即可得EB=3EM,根據(jù)等高三角形的面積比等于對(duì)應(yīng)底的比,即可求得答案.
          解答:解:∵四邊形ABCD是矩形,
          ∴∠D=∠BCD=90°,DF=MF,
          由折疊的性質(zhì)可得:∠EMF=∠D=90°,
          即FM⊥BE,CF⊥BC,
          ∵BF平分∠EBC,
          ∴CF=MF,
          ∴DF=CF;故①正確;
          ∵∠BFM=90°-∠EBF,∠BFC=90°-∠CBF,
          ∴∠BFM=∠BFC,
          ∵∠MFE=∠DFE=∠CFN,
          ∴∠BFE=∠BFN,
          ∵∠BFE+∠BFN=180°,
          ∴∠BFE=90°,
          即BF⊥EN,故②正確;
          ∵在△DEF和△CNF中,
          ,
          ∴△DEF≌△CNF(ASA),
          ∴EF=FN,
          ∴BE=BN,
          但無法求得△BEN各角的度數(shù),
          ∴△BEN不一定是等邊三角形;故③錯(cuò)誤;
          ∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,
          ∴BM=BC=AD=2DE=2EM,
          ∴BE=3EM,
          ∴S△BEF=3S△EMF=3S△DEF
          故④正確.
          故選B.
          點(diǎn)評(píng):此題考查了折疊的性質(zhì)、矩形的性質(zhì)、角平分線的性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)經(jīng)過的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
          A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長(zhǎng)為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
          (1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
          (2)若AB=
          2
          ,BC=2,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
          (1)請(qǐng)解釋圖中點(diǎn)H的實(shí)際意義?
          (2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
          (3)將圖②補(bǔ)充完整;
          (4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請(qǐng)直接寫出t的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動(dòng)點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
          (1)求y與x的函數(shù)關(guān)系式;
          (2)x為何值時(shí),y的值最大,最大值是多少?
          (3)若設(shè)線段AB的長(zhǎng)為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案