日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.動點(diǎn)P在線段AB上從點(diǎn)A向終點(diǎn)B以每秒個單位的速度運(yùn)動,設(shè)運(yùn)動時間為t秒.在直線OB 上取兩點(diǎn)M、N作等邊△PMN.
          (1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動到與點(diǎn)O重合時t的值.
          (2)求等邊△PMN的邊長(用t的代數(shù)式表示);
          (3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當(dāng)0≤t≤2秒時S與t的函數(shù)關(guān)系式,并求出S的最大值.
          (4)在(3)中,設(shè)PN與EC的交點(diǎn)為R,是否存在點(diǎn)R,使△ODR是等腰三角形?若存在,求出對應(yīng)的t的值;若不存在,請說明理由.

          解:(1)當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動到與點(diǎn)O重合時,
          MP⊥AB,∵∠A=60°,∴AP=4,∴。(2分)

          (2)∵AP=,∴BP=
          又∵∠B=30°,∠PMB=600°,∴∠BPM=90°
          tan∠B=
          ,即等邊△PMN的邊長為.(4分)
          (3)①當(dāng)時,如圖AP=,∴

          ,∴
          .
          過F作FQ⊥0B于Q,則QN=4,∴EF=OQ=.
          等邊△PMN和矩形ODCE重疊部分的面積為四邊形EFNO的面積,設(shè)為S1

          >0,∴S1隨t的增大而增大,
          ∴t=1時,,∴S1的最大值為.(7分)
          ②當(dāng)<t<2時,如圖

          在△EGK中,GE=,∴EK=,
          ∴S△GEK=.
          ∴等邊△PMN和矩形ODCE重疊部分的面積為四邊形EFNO的面積與△EGK的面積差,設(shè)為S2
          .
          ,對稱軸為
          時,的最大值為.(9分)
          當(dāng)時,。
          綜上可知:當(dāng)時,S的最大值為.(10分)
          (4)過R作RH⊥OB于H,RH=,HN=4,

          OH=,OD=12,DH=,
          ①OR=OD=12時,
          ,,∴>2,不合題意舍去。
          ②DR=OD=12時,,
          ,∴>2,或<0,都不合題意舍去。
          ③OR=DR時,H為CD中點(diǎn),OH=6,∴,∴
          綜上所述,時,△ODR是等腰三角形。(12分)

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在Rt△AOB中,∠AOB=90°,AO=4
          3
          ,∠ABO=30°.動點(diǎn)P在線段AB上從點(diǎn)A向終點(diǎn)B以每秒
          3
          個單位的速度運(yùn)動,設(shè)運(yùn)動時間為t秒.在直線OB 上取兩點(diǎn)M、N作等邊△PMN.
          (1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動到與點(diǎn)O重合時t的值.
          (2)求等邊△PMN的邊長(用t的代數(shù)式表示);
          (3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當(dāng)0≤t≤2秒時S與t的函數(shù)關(guān)系式,并求出S的最大值.
          (4)在(3)中,設(shè)PN與EC的交點(diǎn)為R,是否存在點(diǎn)R,使△ODR是等腰三角形?若存在,求出對應(yīng)的t的值;若不存在,請說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•閘北區(qū)一模)已知:如圖1,在Rt△OAC中,AO⊥OC,點(diǎn)B在OC邊上,OB=6,BC=12,∠ABO+∠C=90°.動點(diǎn)M和N分別在線段AB和AC邊上.
          (l)求證△AOB∽△COA,并求cosC的值;
          (2)當(dāng)AM=4時,△AMN與△ABC相似,求△AMN與△ABC的面積之比;
          (3)如圖2,當(dāng)MN∥BC時,將△AMN沿MN折疊,點(diǎn)A落在四邊形BCNM所在平面的點(diǎn)為點(diǎn)E.設(shè)MN=x,△EMN與四邊形BCNM重疊部分的面積為y,試寫出y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年重慶全善學(xué)校九年級下學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.動點(diǎn)P在線段AB上從點(diǎn)A向終點(diǎn)B以每秒個單位的速度運(yùn)動,設(shè)運(yùn)動時間為t秒.在直線OB 上取兩點(diǎn)M、N作等邊△PMN.

          (1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動到與點(diǎn)O重合時t的值.

          (2)求等邊△PMN的邊長(用t的代數(shù)式表示);

          (3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當(dāng)0≤t≤2秒時S與t的函數(shù)關(guān)系式,并求出S的最大值.

          (4)在(3)中,設(shè)PN與EC的交點(diǎn)為R,是否存在點(diǎn)R,使△ODR是等腰三角形?若存在,求出對應(yīng)的t的值;若不存在,請說明理由.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖1,在Rt△AOB中,∠AOB=90°,AO=數(shù)學(xué)公式,∠ABO=30°.動點(diǎn)P在線段AB上從點(diǎn)A向終點(diǎn)B以每秒數(shù)學(xué)公式個單位的速度運(yùn)動,設(shè)運(yùn)動時間為t秒.在直線OB 上取兩點(diǎn)M、N作等邊△PMN.
          (1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動到與點(diǎn)O重合時t的值.
          (2)求等邊△PMN的邊長(用t的代數(shù)式表示);
          (3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當(dāng)0≤t≤2秒時S與t的函數(shù)關(guān)系式,并求出S的最大值.
          (4)在(3)中,設(shè)PN與EC的交點(diǎn)為R,是否存在點(diǎn)R,使△ODR是等腰三角形?若存在,求出對應(yīng)的t的值;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案