日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,如圖甲,在△ABC中,AE平分∠BAC(∠C>∠B),F(xiàn)為AE上一點(diǎn),且FD⊥BC于D.
          (1)試說(shuō)明:∠EFD=
          12
          (∠C-∠B);
          (2)當(dāng)F在AE的延長(zhǎng)線上時(shí),如圖乙,其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
          分析:(1)根據(jù)三角形的外角的性質(zhì)可以得到∠FEC=∠B+∠BAE,然后根據(jù)三角形內(nèi)角和定理以及角平分線的定義得到∠BAE=
          1
          2
          ∠BAC=
          1
          2
          (180°-∠B-∠C)=90°-
          1
          2
          (∠B+∠C),求得∠FEC,再根據(jù)直角三角形的兩個(gè)銳角互余求得∠EFD的度數(shù);
          (2)根據(jù)(1)可以得到∠AEC=90°+
          1
          2
          (∠B-∠C),根據(jù)對(duì)頂角相等即可求得∠DEF,然后利用直角三角形的兩個(gè)銳角互余即可求解.
          解答:解:∵FD⊥EC,
          ∴∠EFD=90°-∠FEC,
          ∴∠FEC=∠B+∠BAE,
          又∵AE平分∠BAC,
          ∴∠BAE=
          1
          2
          ∠BAC=
          1
          2
          (180°-∠B-∠C)
          =90°-
          1
          2
          (∠B+∠C),
          則∠FEC=∠B+90°-
          1
          2
          (∠B+∠C)
          =90°+
          1
          2
          (∠B-∠C),
          則∠EFD=90°-[90°+
          1
          2
          (∠B-∠C)]
          =
          1
          2
          (∠C-∠B);
          (2)成立.
          證明:同(1)可證:∠AEC=90°+
          1
          2
          (∠B-∠C),
          ∴∠DEF=∠AEC=90°+
          1
          2
          (∠B-∠C),
          ∴∠EFD=90°-[90°+
          1
          2
          (∠B-∠C)]
          =
          1
          2
          (∠C-∠B).
          點(diǎn)評(píng):本題考查了三角形的內(nèi)角和定理以及外角和定理,角平分線的定義,正確求得:∠AEC=90°+
          1
          2
          (∠B-∠C)是關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          根據(jù)所給的基本材料,請(qǐng)你進(jìn)行適當(dāng)?shù)奶幚,編?xiě)一道綜合題.
          編寫(xiě)要求:①提出具有綜合性、連續(xù)性的三個(gè)問(wèn)題;②給出正確的解答過(guò)程;③寫(xiě)出編寫(xiě)意圖和學(xué)生答題情況的預(yù)測(cè).
          材料①:如圖,先把一矩形紙片ABCD對(duì)折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過(guò)點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著B(niǎo)E第四次將該紙片折疊后,點(diǎn)A就會(huì)落在EC上.
          精英家教網(wǎng)
          材料②:已知AC是∠MAN的平分線.
          (1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
          (2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
          (3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
          則AB+AD=
           
          AC(用含α的三角函數(shù)表示).
          精英家教網(wǎng)
          材料③:
          已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).
          精英家教網(wǎng)
          編寫(xiě)試題選取的材料是
           
          (填寫(xiě)材料的序號(hào))
          編寫(xiě)的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
          (2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值.
          (3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng).
          試題解答(寫(xiě)出主要步驟即可):(1)過(guò)點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
          (2)分別求得Rt△ACB的周長(zhǎng)和面積,由周長(zhǎng)求出t,代入函數(shù)解析式驗(yàn)證;
          (3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省吉安市七校八年級(jí)下學(xué)期聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:解答題

          已知,如圖甲,在△ABC中,AE平分∠BAC(∠C>∠B),F(xiàn)為AE上一點(diǎn),且FD⊥BC于D。

          (1)試說(shuō)明:∠EFD=(∠C-∠B);
          (2)當(dāng)F在AE的延長(zhǎng)線上時(shí),如圖乙,其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年重慶市萬(wàn)州區(qū)初中數(shù)學(xué)教師專業(yè)知識(shí)競(jìng)賽試卷(解析版) 題型:解答題

          根據(jù)所給的基本材料,請(qǐng)你進(jìn)行適當(dāng)?shù)奶幚,編?xiě)一道綜合題.
          編寫(xiě)要求:①提出具有綜合性、連續(xù)性的三個(gè)問(wèn)題;②給出正確的解答過(guò)程;③寫(xiě)出編寫(xiě)意圖和學(xué)生答題情況的預(yù)測(cè).
          材料①:如圖,先把一矩形紙片ABCD對(duì)折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過(guò)點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著B(niǎo)E第四次將該紙片折疊后,點(diǎn)A就會(huì)落在EC上.

          材料②:已知AC是∠MAN的平分線.
          (1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
          (2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
          (3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
          則AB+AD=______AC(用含α的三角函數(shù)表示).

          材料③:
          已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).

          編寫(xiě)試題選取的材料是______(填寫(xiě)材料的序號(hào))
          編寫(xiě)的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
          (2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值.
          (3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng).
          試題解答(寫(xiě)出主要步驟即可):(1)過(guò)點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
          (2)分別求得Rt△ACB的周長(zhǎng)和面積,由周長(zhǎng)求出t,代入函數(shù)解析式驗(yàn)證;
          (3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2014屆江西省吉安市七校八年級(jí)下學(xué)期聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

          已知,如圖甲,在△ABC中,AE平分∠BAC(∠C>∠B),F(xiàn)為AE上一點(diǎn),且FD⊥BC于D。

          (1)試說(shuō)明:∠EFD=(∠C-∠B);

          (2)當(dāng)F在AE的延長(zhǎng)線上時(shí),如圖乙,其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由。

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案