日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知AB是⊙O的直徑,C、E是⊙O上的點, CD⊥AB,EF⊥AB,垂足分別為D、F,過點E作 EG⊥0C,垂足為G,延長EG交OA于H。

          求證:
          (1)HO·HF=HG·HE;
          (2)FG=CD

          【答案】
          (1)解:證明:∵ EG⊥0C, EF⊥AB
          ∴ ∠HGO=∠HFE=90°
          又 ∵ ∠GHO=∠FHE
          ∴△HGO∽△HFE

          即HO·HF=HG·HE 。
          (2)解:過點G作 GM⊥0H,垂足為M,連結(jié)OE
          ,∠EHO=∠FHG
          ∴ △HGF∽△HOE
          ∴ ∠HFG=∠HEO
          ∵ GM⊥0H,EG⊥0C
          ∴∠GMF=∠OGE=90°
          ∴ Rt△FGM∽Rt△EOG

          又 GM∥CD

          由OE=OC,得GF=CD 。
          【解析】(1)根據(jù)垂直的定義得出 ∠HGO=∠HFE=90°,又 ∠GHO=∠FHE ,從而判斷出 △HGO∽△HFE ,根據(jù)相似三角形對應邊成比例得出根據(jù)比例的性質(zhì)得出 HO·HF=HG·HE;
          (2)過點G作 GM⊥0H,垂足為M,連結(jié)OE ,根據(jù)及∠EHO=∠FHG由兩邊對應成比例,及夾角相等的兩個三角形相似得出△HGF∽△HOE,由相似三角形對應角相等得出 ∠HFG=∠HEO ,根據(jù)垂直的定義得出∠GMF=∠OGE=90°,進而得出 Rt△FGM∽Rt△EOG;由相似三角形對應邊成比例得出,根據(jù)平行線分線段成比例定理得出,即,進而得出,根據(jù)OE=OC,得GF=CD。

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】(1) 發(fā)現(xiàn):

          如圖1,點是線段外一動點,且.當點位于 時,線段的長取得最大值;最大值為 (用含,的式子表示)

          (2)應用:

          如圖2,點為線段外一動點,,,分別以為邊在外部作等邊和等邊,連接,

          ①求證:

          ②直接寫出線段長的最大值.

          (3)拓展:

          如圖3,在平面直角坐標系中,點,點,點為線段外一動點,,,請直接寫出線段長的最大值及此時點的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,直線DE經(jīng)過點A

          1)寫出∠B的內(nèi)錯角是   ,同旁內(nèi)角是   

          2)若∠EAC=∠C,AC平分∠BAE,∠B44°,求∠C的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,直線 分別交x軸、y軸于A、B兩點,已知點C坐標為(6,0),若直線AB上存在點P,使∠OPC=90°,則m的取值范圍是

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖示,若△ABC內(nèi)一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點是法國數(shù)學家和教育家克洛爾于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當時的人們所注意,1875年,布洛卡點被一個數(shù)學愛好者法國軍官布洛卡重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。

          A.

          B.

          C.

          D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)y=ax2+bx+c+2的圖象如圖,頂點為(-1,0),下列結(jié)論:abc<0;b2-4ac=0;a>2;4a-2b+c>0.其中正確結(jié)論的個數(shù)是( )

          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】2018年宜賓市創(chuàng)建全國文明城市的過程中,某小區(qū)決定購買文明用語提示牌和文明信息公示欄.若購買2個提示牌和3個公示欄需要510元;購買3個提示牌和5個公示欄需要840元.

          (1)求提示牌和公示欄的單價各是多少元?

          (2)若該小區(qū)購買提示牌和公示欄共50個,要求購買公示欄至少12個,且總費用不超過3200元.請你列舉出所有購買方案,并指出哪種方案費用最少,最少費用為多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】A,B兩點在數(shù)軸上如圖所示,其中O為原點,點A對應的有理數(shù)為a,點B對應的有理數(shù)為b,且點A距離原點6個單位長度,ab滿足b-|a|=2.

          (1)a=______;b=______;

          (2)動點P從點A出發(fā),以每秒2個單位長度的速度向右運動,設運動時間為t秒(t>0)

          ①當PO=2PB時,求點P的運動時間t

          ②當PB=6時,求t的值:

          (3)當點P運動到線段OB上時,分別取APOB的中點E、F,則的值是否為一個定值?如果是,求出定值,如果不是,說明理由.

          查看答案和解析>>

          同步練習冊答案