日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)拋物線y=ax2+bx+c的圖象如圖所示,已知該拋物線與x軸交于A、B兩點,頂點為C,
          (1)根據(jù)圖象所給信息,求出拋物線的解析式;
          (2)求直線BC與y軸交點D的坐標;
          (3)點P是直線BC上的一點,且△APB與△DOB相似,求點P的坐標.
          分析:(1)根據(jù)圖象直接得出二次函數(shù)的頂點式以及圖象經(jīng)過點(-1,0),即可得出答案;
          (2)根據(jù)二次函數(shù)解析式得出與x軸的交點坐標,進而得出直線解析式,即可得出答案;
          (3)分別對當△PAB∽△DOB和當△APB∽△DOB,得出答案即可.
          解答:解:(1)設(shè)y=a(x-1)2+4(2分)
          ∵圖象經(jīng)過點(-1,0),
          ∴4a+4=0,a=-1(1分),
          ∴y=-x2+2x+3(1分);

          (2)-x2+2x+3=0,解得x1=3,x2=-1,
          ∴B(3,0)(1分),
          設(shè)y=kx+b(k≠0),
          3k+b=0
          k+b=4
          ,
          解得
          k=-2
          b=6
          ,(1分)
          ∴y=-2x+6,(1分)
          ∴D(0,6).(1分)

          (3)設(shè)P(k,-2k+6),(k<3),(1分)
          當△PAB∽△DOB,k=-1,
          ∴-2k+6=2+6=8(1分),
          ∴P(-1,8),(1分)
          當△APB∽△DOB,過點P作PF⊥x軸,垂足為點F,
          ∴∠ODB=∠PAB(1分),
          tan∠PAB=tan∠ODB=
          PF
          AF
          =
          -2k+6
          1+k
          =
          3
          6
          =
          1
          2
          (1分),
          k=
          11
          5
          ,∴P(
          11
          5
          8
          5
          )
          (1分),
          綜上所述,P的坐標是(-1,8)或(
          11
          5
          ,
          8
          5
          )
          點評:此題主要考查了二次函數(shù)的頂點式求解析式以及直線解析式求法以及相似三角形的性質(zhì),根據(jù)相似三角形的性質(zhì)解決二次函數(shù)問題是考查重點同學們應重點掌握.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          已知點(2,8)在拋物線y=ax2上,則a的值為( 。
          A、±2
          B、±2
          2
          C、2
          D、-2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸的負半軸相交于D.
          (1)若拋物線y=ax2+bx+c經(jīng)過B、C、D三點,求此拋物線的解析式,并寫出拋物線與圓A的另一個交點E的坐標;
          (2)若動直線MN(MN∥x軸)從點D開始,以每秒1個長度單位的速度沿y軸的正方向移動,且與線段CD、y軸分別交于M、N兩點,動點P同時從點C出發(fā),在線段OC上以每秒2個長度單位的速度向原點O運動,連接PM,設(shè)運動時間為t秒,當t為何值時,
          MN•OPMN+OP
          的值最大,并求出最大值;
          (3)在(2)的條件下,若以P、C、M為頂點的三角形與△OCD相似,求實數(shù)t的值.精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          若(2,0)、(4,0)是拋物線y=ax2+bx+c上的兩個點,則它的對稱軸是直線( 。
          A、x=0B、x=1C、x=2D、x=3

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在直角坐標平面內(nèi),O為原點,拋物線y=ax2+bx經(jīng)過點A(6,0),且頂點B(m,6)在直線y=2x上.
          (1)求m的值和拋物線y=ax2+bx的解析式;
          (2)如在線段OB上有一點C,滿足OC=2CB,在x軸上有一點D(10,0),連接DC,且直線DC與y軸交于點E.
          ①求直線DC的解析式;
          ②如點M是直線DC上的一個動點,在x軸上方的平面內(nèi)有另一點N,且以O(shè)、E、M、N為頂點的四邊形是菱形,請求出點N的坐標.(直接寫出結(jié)果,不需要過程.)
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•陜西)如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
          (1)“拋物線三角形”一定是
          等腰
          等腰
          三角形;
          (2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
          (3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達式;若不存在,說明理由.

          查看答案和解析>>

          同步練習冊答案