日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在第一象限內(nèi),直線y=mx與過點B(0,1)且平行于x軸的直線l相交于點A,半徑為r的⊙Q與直線y=mx、x軸分別相切于點T、E,且與直線l分別交于不同的M、N兩點.
          (1)當(dāng)點A的坐標(biāo)為(,p)時,
          ①填空:p=______,m=______
          【答案】分析:(1)①由點A(,p)在直線l上,得到p=1;點A在直線y=mx上,得到m=;在Rt△OBA中,OB=1,AB=,OA=,得到∠AOE=60°;
          ②連接TM,ME,EN,ON,根據(jù)切線的性質(zhì)得到QE⊥x軸,QT⊥OT,由QE⊥MN,得到MF=NF,而r=2,EF=1,則四邊形QNEM為平行四邊形,即QN∥ME;同時有△QEN為等邊三角形,則∠NQE=60°,∠QNF=30°;在四邊形OEQT中,∠QTO=∠QEO=90°,∠TOE=60°,可求出∠TQE=120°,于是有∠TQE+∠NQE=120°+60°=180°,即T、Q、N三點共線,得到TN為直徑;得到∠TMN=90°,得到TN∥ME,所以∠MTN=60°=∠TNE,得到以T、M、E、N為頂點的四邊形是等腰梯形;
          (2)連DM,ME,根據(jù)垂徑定理和圓周定理的推論得到∠DME=90°,DM垂直平分MN,所以Rt△MFD∽Rt△EFM,得到MF2=EF•FD,設(shè)D(h,k),(h>0,k=2r),則過M、D、N三點的拋物線的解析式為:y=a(x-h)2+k,令y=1,得到x1=h-,x2=h+,則MF=MN=,得到(2=1•(k-1),解得a=-1.
          解答:解:(1)①∵點A的坐標(biāo)為(,p),點A在直線l上,
          ∴p=1,即點A坐標(biāo)為(,1);
          而點A在直線y=mx上,
          ∴1=m,解得m=;
          在Rt△OBA中,OB=1,AB=,
          ∴OA=,
          ∴∠AOB=30°,
          ∴∠AOE=60°.
          故答案為1,,60°;

          ②連接TM,ME,EN,如圖,
          ∵OE和OT是⊙Q的切線,
          ∴QE⊥x軸,QT⊥OT,即∠QTA=90°,
          而l∥x軸,
          ∴QE⊥MN,
          ∴MF=NF,
          又∵當(dāng)r=2,EF=1,
          ∴QF=2-1=1,
          ∴四邊形QNEM為平行四邊形,即QN∥ME,
          ∴NQ=NE,即△QEN為等邊三角形,
          ∴∠NQE=60°,∠QNF=30°,
          在四邊形OEQT中,∠QTO=∠QEO=90°,∠TOE=60°,
          ∴∠TQE=360°-90°-90°-60°=120°,
          ∴∠TQE+∠NQE=120°+60°=180°,
          ∴T、Q、N三點共線,即TN為直徑,
          ∴∠TMN=90°,
          ∴TN∥ME,
          ∴∠MTN=60°=∠TNE,
          ∴以T、M、E、N為頂點的四邊形是等腰梯形;

          (2)對m、r的不同取值,經(jīng)過M、D、N三點的拋物線y=ax2+bx+c,a的值不會變化.理由如下:
          連DM,ME,如圖,
          ∵DE為直徑,
          ∴∠DME=90°,
          而DE垂直平分MN,
          ∴Rt△MFD∽Rt△EFM,
          ∴MF2=EF•FD,
          設(shè)D(h,k),(h>0,k=2r),則過M、D、N三點的拋物線的解析式為:y=a(x-h)2+k,
          又∵M(jìn)、N的縱坐標(biāo)都為1,
          當(dāng)y=1,a(x-h)2+k=1,解得x1=h-,x2=h+,
          ∴MN=2,
          ∴MF=MN=,
          ∴(2=1•(k-1),
          ∵k>1,
          =k-1,
          ∴a=-1.
          點評:本題考查了拋物線的頂點式:y=a(x-h)2+k,其中頂點坐標(biāo)為(h,k);也考查了等腰梯形的判定和三角形相似的判定與性質(zhì)以及垂徑定理.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在第一象限內(nèi),直線y=mx與過點B(0,1)且平行于x軸的直線l相交于點A,半徑為r的⊙Q與直線y=mx、x軸分別相切于點T、E,且與直線l分別交于不同的M、N兩點.
          (1)當(dāng)點A的坐標(biāo)為(
          3
          3
          ,p)時,
          ①填空:p=
           
          ,m=
           
          ,∠AOE=
           

          ②如圖2,連接QT、QE,QE交MN于點F,當(dāng)r=2時,試說明:以T、M、E、N為頂點的四邊形是等腰梯形;
          (2)在圖1中,連接EQ并延長交⊙Q于點D,試探索:對m、r的不同取值,經(jīng)過M、D、N三點的拋物線y=ax2+bx+c,a的值會變化嗎?若不變,求出a的值;若變化.請說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          P點為拋物線(為常數(shù),)上任一點,將拋物線繞頂點逆時針旋轉(zhuǎn)后得到的新圖象與軸交于、兩點(點在點的上方),點為點旋轉(zhuǎn)后的對應(yīng)點.

          1.(1)當(dāng),點橫坐標(biāo)為4時,求點的坐標(biāo);

          2.(2)設(shè)點,用含、的代數(shù)式表示

          3.(3) 如圖,點在第一象限內(nèi), 點軸的正半軸上,點的中點, 平分,,當(dāng)時,求的值.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年廣東省深圳市中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

          如圖1,在第一象限內(nèi),直線y=mx與過點B(0,1)且平行于x軸的直線l相交于點A,半徑為r的⊙Q與直線y=mx、x軸分別相切于點T、E,且與直線l分別交于不同的M、N兩點.
          (1)當(dāng)點A的坐標(biāo)為(,p)時,
          ①填空:p=______,m=______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建省泉州市九年級升學(xué)考試(樣卷)數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖1,在第一象限內(nèi),直線與過點且平行于軸的直線相交于點,半徑為的⊙與直線軸分別相切于點、,且與直線分別交于不同的、兩點.

          (1)當(dāng)點A的坐標(biāo)為時,

          ① 填空:=   , =    =    ;

          ②如圖2,連結(jié),交直線,當(dāng)時,試說明以、 、為頂點的四邊形是等腰梯形;

          (2)在圖1中,連結(jié)并延長交⊙于點,試探索:對不同的取值,經(jīng)過、三點的拋物線,的值會變化嗎?若不變,求出的值;若變化,請說明理由.

           

          查看答案和解析>>

          同步練習(xí)冊答案