日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在邊長(zhǎng)為1的正方形ABCD中,一直角三角尺PQR的直角頂點(diǎn)P在對(duì)精英家教網(wǎng)角線AC上移動(dòng),直角邊PQ經(jīng)過點(diǎn)D,另一直角邊與射線BC交于點(diǎn)E.
          (1)試判斷PE與PD的大小關(guān)系,并證明你的結(jié)論;
          (2)連接PB,試證明:△PBE為等腰三角形;
          (3)設(shè)AP=x,△PBE的面積為y,
          ①求出y關(guān)于x 函數(shù)關(guān)系式;
          ②當(dāng)點(diǎn)P落在AC的何處時(shí),△PBE的面積最大,此時(shí)最大值是多少?
          分析:(1)作輔助線:過點(diǎn)P作GF∥AB,分別交AD、BC于G、F,構(gòu)建全等三角形Rt△EFP≌Rt△PGD(ASA),然后由全等三角形的對(duì)應(yīng)邊相等證明PE=PD;
          (2)由正方形的四條邊相等,對(duì)角線平分對(duì)角的性質(zhì)證明△APB≌△APD(SAS),然后由全等三角形的對(duì)應(yīng)邊相等證明PB=PD;利用(1)的結(jié)論,由等量代換證明PE=PB,即△PBE為等腰三角形;
          (3)①利用△APB≌△APD的對(duì)應(yīng)邊相等知,BF=PG.在直角三角形AGP中,利用邊角關(guān)系求得BF=PG的值,所以PF=AB-GP;然后根據(jù)三角形的面積公式求得關(guān)于y與x的函數(shù)關(guān)系式;
          ②根據(jù)①的函數(shù)關(guān)系式y(tǒng)=-
          1
          2
          x2+
          2
          2
          x的頂點(diǎn)式函數(shù)關(guān)系式求最值.
          解答:證:(1)過點(diǎn)P作GF∥AB,分別交AD、BC于G、F.如圖所示.
          精英家教網(wǎng)
          ∵四邊形ABCD是正方形,
          ∴四邊形ABFG和四邊形GFCD都是矩形,△AGP和△PFC都是等腰直角三角形,
          ∴GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90°;
          又∵∠1+∠3=∠2+∠3=90°,
          ∴∠1=∠2;
          又PF=GD,∠PFE=∠PGD=90°,
          ∴Rt△EFP≌Rt△PGD(ASA),
          ∴PE=PD;

          (2)∵AD=AB,∠PAB=∠PAD=45°,AP=AP,
          ∴△APB≌△APD(SAS),
          ∴PB=PD,
          ∴PE=PB,
          ∴△PBE為等腰三角形;

          (3)①∵AP=x,
          BF=PG=
          2
          2
          x
          PF=1-
          2
          2
          x
          ,
          S△PBE=BF•PF=
          2
          2
          x(1-
          2
          2
          x)
          =-
          1
          2
          x2+
          2
          2
          x

          y=-
          1
          2
          x2+
          2
          2
          x
          0<x<
          2
          ),
          y=-
          1
          2
          x2+
          2
          2
          x=-
          1
          2
          ( x-
          2
          2
          )2+
          1
          4

          a=-
          1
          2
          <0
          ,
          ∴當(dāng)x=
          2
          2
          時(shí),y最大值=
          1
          4
          點(diǎn)評(píng):本題綜合考查了二次函數(shù)的最值、正方形的性質(zhì)、等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì).解答此題的關(guān)鍵是通過作輔助線:過點(diǎn)P作GF∥AB,分別交AD、BC于G、F,構(gòu)建全等三角形Rt△EFP≌Rt△PGD(ASA),另外在求二次函數(shù)的最值時(shí),在初中階段一般情況下是將函數(shù)的一般解析式轉(zhuǎn)化為頂點(diǎn)式函數(shù)解析式,然后根據(jù)函數(shù)的性質(zhì)求其解析式.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在邊長(zhǎng)為a的正方形中,剪去一個(gè)邊長(zhǎng)為b的小正方形(a>b),將余下部分拼成一個(gè)梯形,根據(jù)兩個(gè)圖形陰影部分面積的關(guān)系,可以得到一個(gè)關(guān)于a、b的恒等式為( 。
          精英家教網(wǎng)
          A、(a-b)2=a2-2ab+b2B、(a+b)2=a2+2ab+b2C、a2-b2=(a+b)(a-b)D、a2+ab=a(a+b)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          5、如圖所示,在邊長(zhǎng)為a的正方形中挖去一個(gè)邊長(zhǎng)為b的小正方形(a>b),再把剩余的部分剪拼成一個(gè)矩形,通過計(jì)算圖形(陰影部分的面積),驗(yàn)證了一個(gè)等式是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,在邊長(zhǎng)為1的網(wǎng)格中作出△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°后的圖形△A′B′C′,并計(jì)算對(duì)應(yīng)點(diǎn)B和B′之間的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在邊長(zhǎng)為1的網(wǎng)格中作出△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°,再向下平移2格后的圖形△A′B′C′.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在邊長(zhǎng)為1的網(wǎng)格中作出△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°,再向下平移2格后的圖形△A′B′C′.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案