日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在學(xué)習(xí)蘇科版九下《銳角三角函數(shù)》一章時,小明同學(xué)對一個角的倍角的三角函數(shù)值是否具有關(guān)系產(chǎn)生了濃厚的興趣,進行了一些研究.

          (1)初步嘗試:我們知道:tan60°=   ,tan30°=   ,發(fā)現(xiàn)結(jié)論:tanA   2tanA(填“=”或“≠”);

          (2)實踐探究:如圖1,在Rt△ABC中,∠C=90°,AC=2,BC=1,求tanA的值;小明想構(gòu)造包含A的直角三角形:延長CAD,使得DAAB,連接BD,所以得到∠DA,即轉(zhuǎn)化為求∠D的正切值.

          請按小明的思路進行余下的求解:

          (3)拓展延伸:如圖2,在Rt△ABC中,∠C=90°,AC=3,tanA

          ①tan2A   ;

          tan3A的值.

          【答案】(1),,≠;(2)﹣2;(3)①;②.

          【解析】

          (1)直接利用特殊角的三角函數(shù)值得結(jié)論;

          (2)根據(jù)題意,利用勾股定理求AC,得結(jié)論

          (3)①作AB的垂直平分線交ACE,連接BE,則∠BEC=2A,在RtEBC中,利用勾股定理求出EC,求tanBEC得結(jié)果;

          ②作BMAC于點M,使∠MBE=EBA,則∠BMC=3A.利用角平分線的性質(zhì)和勾股定理求出EM的長,求tanBMC得結(jié)果.

          (1)tan60°=,tan30°=,

          發(fā)現(xiàn)結(jié)論:tanA≠2tanA,

          故答案為:,,≠;

          (2)在RtABC中,∠C=90°,AC=2,BC=1,

          AB=,

          如圖1,延長CAD,使得DA=AB,

          AD=AB=

          ∴∠D=ABD,

          ∴∠BAC=2D,CD=AD+AC=2+

          tanA=tanD=﹣2;

          (3)①如圖2,AB的垂直平分線交ACE,連接BE,

          則∠BEC=2A,AE=BE,A=ABE

          RtABC中,∠C=90°,AC=3,tanA=,

          BC=1,AB=

          設(shè)AE=x,則EC=3﹣x,

          RtEBC中,x2=(3﹣x)2+1,

          解得x=,即AE=BE=,EC=,

          tan2A=tanBEC=,

          故答案為:;

          ②如圖3,作BMAC于點M,使∠MBE=EBA,

          則∠BMC=A+MBA=3A.

          設(shè)EM=y(tǒng),則MC=EC﹣EM=﹣y,

          ∵∠MBE=EBA,

          ,即

          BM=y,

          RtMBC中,BM2=CM2+BC2

          即(y)2=(﹣y)2+1,

          整理,得117y2+120y﹣125=0,

          解得,y1,y2=﹣(不合題意,舍去)

          EM=,CM=

          tan3A=tanBMC=,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】請判斷下列問題中,哪些是反比例函數(shù),并說明你的依據(jù).

          (1)三角形的底邊一定時,它的面積和這個底邊上的高;

          (2)梯形的面積一定時,它的中位線與高;

          (3)當(dāng)矩形的周長一定時,該矩形的長與寬.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,等邊△ABC 內(nèi)接于⊙OP 上任一點(點 P 不與點 A、B 重合),連 AP、BP,過點 C CMBP PA 的延長線于點 M

          (1)填空:∠APC 度,∠BPC 度;

          (2)求證:△ACM≌△BCP

          (3)若 PA=1,PB=2,求梯形 PBCM 的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線yx2+bx﹣2x軸交于A,B兩點,與y軸交于C點,且A(﹣1,0).

          (1)求拋物線的解析式及頂點D的坐標(biāo);

          (2)判斷ABC的形狀,證明你的結(jié)論;

          (3)點M是拋物線對稱軸上的一個動點,當(dāng)MC+MA的值最小時,求點M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,等腰RtABC中,斜邊AB的長為2,OAB的中點,PAC邊上的動點,OQOPBC于點Q,MPQ的中點,當(dāng)點P從點A運動到點C時,點M所經(jīng)過的路線長為(  )

          A. B. C. 1 D. 2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列命題:

          在函數(shù):y=-2x-1;y=3x;y=;y=-;y=(x<0)中,y隨x增大而減小的有3個函數(shù);

          對角線互相垂直平分且相等的四邊形是正方形;

          反比例函數(shù)圖象是兩條無限接近坐標(biāo)軸的曲線,它只是中心對稱圖形;

          已知數(shù)據(jù)x1、x2、x3的方差為s2,則數(shù)據(jù)x1+2,x3+2,x3+2的方差為s3+2

          其中是真命題的個數(shù)是(

          A1個 B2個 C3個 D4個

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=2,與x軸的一個交點坐標(biāo)(40),其部分圖象如圖所示,下列結(jié)論:①拋物線過原點;②ab+c0;4a+b+c=0;④拋物線的頂點坐標(biāo)為(2,b);⑤當(dāng)x1時,yx增大而增大.其中結(jié)論正確的是( 。

          A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8CD=6,BC=4AB邊上有一動點P(不與A、B重合),連結(jié)DP,作PQ⊥DP,使得PQ交射線BC于點E,設(shè)AP=x

          當(dāng)x為何值時,△APD是等腰三角形?

          若設(shè)BE=y,求y關(guān)于x的函數(shù)關(guān)系式;

          BC的長可以變化,在現(xiàn)在的條件下,是否存在點P,使得PQ經(jīng)過點C?若存在,求出相應(yīng)的AP的長;若不存在,請說明理由,并直接寫出當(dāng)BC的長在什么范圍內(nèi)時,可以存在這樣的點P,使得PQ經(jīng)過點C

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】請認(rèn)真閱讀下面的數(shù)學(xué)小探究系列,完成所提出的問題:

          (1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,過點D做BC邊上的高DE,則DE與BC的數(shù)量關(guān)系是   ,△BCD的面積為   

          (2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=a,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,請用含a的式子表示△BCD的面積,并說明理由;

          (3)探究3:如圖③,在等腰三角形ABC中,AB=AC,BC=a,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,試探究用含a的式子表示△BCD的面積,要有探究過程.

          查看答案和解析>>

          同步練習(xí)冊答案