日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•煙臺(tái))如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,過(guò)點(diǎn)D作DE∥AB,交∠BCD的平分線于點(diǎn)E,連接BE.
          (1)求證:BC=CD;
          (2)將△BCE繞點(diǎn)C,順時(shí)針旋轉(zhuǎn)90°得到△DCG,連接EG.求證:CD垂直平分EG;
          (3)延長(zhǎng)BE交CD于點(diǎn)P.求證:P是CD的中點(diǎn).

          【答案】分析:(1)延長(zhǎng)DE交BC于F,得平行四邊形ABFD,根據(jù)平行四邊形的性質(zhì)以及銳角三角函數(shù)的概念找到線段之間的關(guān)系,從而證明結(jié)論;
          (2)根據(jù)旋轉(zhuǎn)的性質(zhì),只需說(shuō)明ED=GD,CE=CG,即可證明;
          (3)根據(jù)已知條件,要證明P是CD的中點(diǎn),只需證明PD=AD,借助全等即可證明.
          解答:證明:(1)延長(zhǎng)DE交BC于F,
          ∵AD∥BC,AB∥DF,
          ∴AD=BF,∠ABC=∠DFC.
          在Rt△DCF中,
          ∵tan∠DFC=tan∠ABC=2,
          ,
          即CD=2CF,
          ∵CD=2AD=2BF,
          ∴BF=CF,
          ∴BC=BF+CF=CD+CD=CD.
          即BC=CD.

          (2)∵CE平分∠BCD,
          ∴∠BCE=∠DCE,
          由(1)知BC=CD,
          ∵CE=CE,
          ∴△BCE≌△DCE,
          ∴BE=DE,
          由圖形旋轉(zhuǎn)的性質(zhì)知CE=CG,BE=DG,
          ∴DE=DG,
          ∴C,D都在EG的垂直平分線上,
          ∴CD垂直平分EG.

          (3)連接BD,
          由(2)知BE=DE,
          ∴∠1=∠2.
          ∵AB∥DE,
          ∴∠3=∠2.∴∠1=∠3.
          ∵AD∥BC,∴∠4=∠DBC.
          由(1)知BC=CD,
          ∴∠DBC=∠BDC,∴∠4=∠BDP.
          又∵BD=BD,∴△BAD≌△BPD,
          ∴DP=AD.
          ∵AD=CD,∴DP=CD.
          ∴P是CD的中點(diǎn).
          點(diǎn)評(píng):根據(jù)已知條件巧妙構(gòu)造輔助線,把證明線段相等轉(zhuǎn)化到全等三角形中或根據(jù)特殊四邊形的性質(zhì)進(jìn)行分析.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

          (2009•煙臺(tái))如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過(guò)點(diǎn)(2,-3a),對(duì)稱軸是直線x=1,頂點(diǎn)是M.
          (1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
          (2)經(jīng)過(guò)C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說(shuō)明理由;
          (4)當(dāng)E是直線y=-x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫(xiě)出結(jié)論).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省蘇州市昆山市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

          (2009•煙臺(tái))如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過(guò)點(diǎn)(2,-3a),對(duì)稱軸是直線x=1,頂點(diǎn)是M.
          (1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
          (2)經(jīng)過(guò)C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說(shuō)明理由;
          (4)當(dāng)E是直線y=-x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫(xiě)出結(jié)論).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省宜昌市枝江市雅畈中學(xué)九年級(jí)中考數(shù)學(xué)強(qiáng)化訓(xùn)練專題3 二次函數(shù)(解析版) 題型:解答題

          (2009•煙臺(tái))如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過(guò)點(diǎn)(2,-3a),對(duì)稱軸是直線x=1,頂點(diǎn)是M.
          (1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
          (2)經(jīng)過(guò)C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說(shuō)明理由;
          (4)當(dāng)E是直線y=-x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫(xiě)出結(jié)論).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2009年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2009•煙臺(tái))如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過(guò)點(diǎn)(2,-3a),對(duì)稱軸是直線x=1,頂點(diǎn)是M.
          (1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
          (2)經(jīng)過(guò)C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說(shuō)明理由;
          (4)當(dāng)E是直線y=-x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫(xiě)出結(jié)論).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(08)(解析版) 題型:填空題

          (2009•煙臺(tái))如圖,將兩張長(zhǎng)為8,寬為2的矩形紙條交叉,使重疊部分是一個(gè)菱形,容易知道當(dāng)兩張紙條垂直時(shí),菱形的周長(zhǎng)有最小值8,那么菱形周長(zhǎng)的最大值是    cm.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案