日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,拋物線y=ax2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點,與x軸交于另一點B.
          (1)求拋物線的解析式;
          (2)已知點D(m,m+1)在第一象限的拋物線上,求點D關于直線BC對稱的點的坐標.
          分析:(1)由于拋物線y=ax2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點,利用待定系數(shù)法即可確定拋物線的解析式;
          (2)由于點D(m,m+1)在第一象限的拋物線上,把D的坐標代入(1)中的解析式即可求出m,然后利用對稱就可以求出關于直線BC對稱的點的坐標.
          解答:解:(1)∵拋物線y=ax2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點,
          0=a-b-4a
          4=-4a
          ,
          解之得:a=-1,b=3,
          ∴y=-x2+3x+4;

          (2)∵點D(m,m+1)在第一象限的拋物線上,
          ∴把D的坐標代入(1)中的解析式得
          m+1=-m2+3m+4,
          ∴m=3或m=-1,
          ∴m=3,
          ∴D(3,4),
          ∵y=-x2+3x+4=0,x=-1或x=4,
          ∴B(4,0),精英家教網(wǎng)
          ∴OB=OC,
          ∴△OBC是等腰直角三角形,
          ∴∠CBA=45°
          設點D關于直線BC的對稱點為點E
          ∵C(0,4)
          ∴CD∥AB,且CD=3
          ∴∠ECB=∠DCB=45°
          ∴E點在y軸上,且CE=CD=3
          ∴OE=1
          ∴E(0,1)
          即點D關于直線BC對稱的點的坐標為(0,1);
          點評:此題考查傳統(tǒng)的待定系數(shù)求函數(shù)解析式,第二問考查點的對稱問題,作合適的輔助線,根據(jù)垂直和三角形全等來求P點坐標
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標系中可能是( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,拋物線y1=-ax2-ax+1經(jīng)過點P(-
          1
          2
          ,
          9
          8
          ),且與拋物線y2=ax2-ax-1相交于A,B兩點.
          (1)求a值;
          (2)設y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標,寫出一條正確的結論,并通過計算說明;
          (3)設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,拋物線y=-ax2+ax+6a交x軸負半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標原點,拋物線上一點C的橫坐標為1.
          (1)求A,B兩點的坐標;
          (2)求證:四邊形ABCD的等腰梯形;
          (3)如果∠CAB=∠ADO,求α的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
          (1)求該拋物線的對稱軸;
          (2)⊙P是經(jīng)過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
          (3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網(wǎng)與x軸交于點A、B,點A的坐標為(-2,0).
          (1)求該拋物線的解析式;
          (2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當△MNC的面積最大時,求點M、N的坐標;
          (3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案