日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知,現(xiàn)將一直角三角形放入圖中,其中,于點,于點

          (1)當(dāng)所放位置如圖一所示時,則的數(shù)量關(guān)系為 ;

          (2)當(dāng)所放位置如圖二所示時,試說明:;

          (3)在(2)的條件下,若交于點,且,,求的度數(shù).

          【答案】(1);(2)詳見解析;(3)45°

          【解析】

          1)由平行線性質(zhì)得出∠1=PFD,∠2=AEM,據(jù)此進一步求解即可;

          2)由平行線性質(zhì)可得∠PFD+BHF=180°,再根據(jù)角的互余關(guān)系進一步證明即可;

          3)根據(jù)角的互余關(guān)系得出∠PHE,再根據(jù)平行線性質(zhì)得出∠PFC度數(shù),然后根據(jù)三角形外角性質(zhì)進一步求解即可.

          1)如圖所示,作PGAB,則PGCD,

          ∴∠1=PFD,∠2=AEM,

          ∵∠1+2=P=90°,

          ,

          故答案為:

          2)如圖所示,

          ABCD,

          ∴∠PFD+BHF=180°,

          ∵∠P=90°,

          ∴∠BHF+PEB=90°,

          ∵∠PEB=AEM,

          ∴∠BHF=PHE=90°AEM,

          ∴∠PFD+90°AEM=180°,

          ∴∠PFDAEM=90°

          3)如圖所示,

          ∵∠P=90°,

          ∴∠PHE=90°FEB=75°,

          ABCD,

          ∴∠PFC=PHE=75°,

          ∵∠PFC=N+DON,

          ∴∠N=75°30°=45°.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(2017江蘇省宿遷市,第25題,10分)如圖,在平面直角坐標(biāo)系xOy中,拋物線x軸于A,B兩點(點A在點B的左側(cè)),將該拋物線位于x軸上方曲線記作M,將該拋物線位于x軸下方部分沿x軸翻折,翻折后所得曲線記作N,曲線Ny軸于點C,連接ACBC

          (1)求曲線N所在拋物線相應(yīng)的函數(shù)表達式;

          (2)求ABC外接圓的半徑;

          (3)點P為曲線M或曲線N上的一動點,點Qx軸上的一個動點,若以點B,CP,Q為頂點的四邊形是平行四邊形,求點Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AFDE交于點M,OBD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=EDB;③∠BMO=90°;MD=2AM=4EM;AM=MF.其中正確結(jié)論的是(

          A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,在RtABC中,∠ACB=90°,AC=4,BC=2,DAC邊上的一個動點,將ABD沿BD所在直線折疊,使點A落在點P處.

          (1)如圖1,若點DAC中點,連接PC

          ①寫出BPBD的長;

          ②求證:四邊形BCPD是平行四邊形.

          (2)如圖2,若BD=AD,過點PPHBCBC的延長線于點H,求PH的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點D、F、E、G都在ABC的邊上,EFAD,1=2,BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學(xué)式)

          解:∵EFAD,(已知)

          ∴∠2=      

          ∵∠1=2,(已知)

          ∴∠1=      

                ,(   

          ∴∠AGD+   =180°,(兩直線平行,同旁內(nèi)角互補)

             ,(已知)

          ∴∠AGD=   (等式性質(zhì))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,兩個大小一樣的直角三角形重疊在一起,將其中一個三角形沿著點B到點C的方向平移到△DEF的位置,AB10,DH4,平移距離為6,則陰影部分面積是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某運輸部門規(guī)定:辦理托運,當(dāng)一種物品的重量不超過16千克時,需付基礎(chǔ)費30元和保險費a元:為限制過重物品的托運,當(dāng)一件物品超過16千克時,除了付以上基礎(chǔ)費和保險費外,超過部分每千克還需付b元超重費.設(shè)某件物品的重量為x千克.

          (1)當(dāng)x≤16時,支付費用為__________________(用含a的代數(shù)式表示);

          當(dāng)x≥16時,支付費用為_________________(用含xa、b的代數(shù)式表示);

          (2)甲、乙兩人各托運一件物品,物品重量和支付費用如下表所示

          物品重量(千克)

          支付費用(元)

          18

          39

          25

          53

          試根據(jù)以上提供的信息確定a,b的值.

          3)根據(jù)這個規(guī)定,若丙要托運一件超過16千克的物品,但支付的費用不想超過70元,那么丙托運的物品最多是多少千克.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】問題探究:

          如圖1ACBDCE均為等邊三角形,點A、D、E在同一直線上,連接BE

          1)證明:AD=BE;

          2)求∠AEB的度數(shù).

          問題變式:

          3)如圖2ACBDCE均為等腰直角三角形,∠ACB=DCE=90°,點A、D、E在同一直線上,CMDCEDE邊上的高,連接BE.()請求出∠AEB的度數(shù);()判斷線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義運算aba(1b),下面給出了關(guān)于這種運算的四個結(jié)論:

          2(2)6 abba

          ab0,則(aa)+(bb)2ab ab0,則a0

          其中正確結(jié)論的序號是 (填上你認為所有正確結(jié)論的序號)

          查看答案和解析>>

          同步練習(xí)冊答案