日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直線y=x+3x軸于A點(diǎn),將一塊等腰直角三角形紙板的直角頂點(diǎn)置于原點(diǎn)O,另兩個(gè)頂點(diǎn)M、N恰落在直線y=x+3上,若N點(diǎn)在第二象限內(nèi),則tan∠AON的值為( )

          A. B. C. D.

          【答案】A

          【解析】

          解:

          OOC⊥ABC,過NND⊥OAD,

          ∵N在直線y="3" 4 x+3上,

          設(shè)N的坐標(biāo)是(x,3 4 x+3),

          DN=-3 4 x+3),OD=-x,

          y="3" 4 x+3

          當(dāng)x=0時(shí),y=3

          當(dāng)y=0時(shí),x=-4,

          ∴A-4,0),B0,3),

          OA=4,OB=3,

          △AOB中,由勾股定理得:AB=5,

          △AOB中,由三角形的面積公式得:AO×OB=AB×OC,

          ∴3×4=5OC,

          OC="12" 5 ,

          Rt△NOM中,OM=ON,∠MON=90°

          ∴∠MNO=45°,

          ∴sin45°="OC" ON ="12" 5 ON ,

          ∴ON="12" 2 5 ,

          Rt△NDO中,由勾股定理得:ND2+DO2=ON2,

          (-3 4 x-3)2+-x2="(12" 2 5 )2,

          解得:x1="-84" 25 ,x2="12" 25 ,

          ∵N在第二象限,

          ∴x只能是-84 25

          3 4 x+3="12" 25 ,

          ND="12" 25 ,OD="84" 25 ,

          tan∠AON="ND" OD ="1" 7

          故選A

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,,點(diǎn)邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),過點(diǎn)邊于點(diǎn),將沿直線翻折,點(diǎn)落在射線上的點(diǎn)處,當(dāng)為直角三角形時(shí),求的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對(duì)稱軸為直線l:x=2,過點(diǎn)AACx軸交拋物線于點(diǎn)C,AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.

          (1)求拋物線的解析式;

          (2)若動(dòng)點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;

          (3)如圖②,F(xiàn)是拋物線的對(duì)稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)y=y=(x>0,0<m<n)的圖象上,對(duì)角線BDy軸,且BDAC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

          (1)當(dāng)m=4,n=20時(shí).

          ①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

          ②若點(diǎn)PBD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.

          (2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,RtABO的頂點(diǎn)A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點(diǎn),ABx軸于B,且SABO=

          (1)直接寫出這兩個(gè)函數(shù)的關(guān)系式;

          (2)求△AOC的面積;

          (3)根據(jù)圖象直接寫出:當(dāng)x為何值時(shí),反比例函數(shù)的值小于一次函數(shù)的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,MABC的邊BC的中點(diǎn),AN平分,BNAN于點(diǎn)N,延長BNAC于點(diǎn)D,已知AB=10,AC=16.

          1)求證:BN=DN;

          2)求MN的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在RtABC中,C=90,AC=4cm,BC=3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連結(jié)PQ。若設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2),解答下列問題:

          (1)當(dāng)t為何值時(shí)?PQ//BC?

          (2)設(shè)APQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系?

          (3)是否存在某一時(shí)刻t,使線段PQ恰好把ABC的周長和面積同時(shí)平分?若存在求出此時(shí)t的值;若不存在,說明理由。

          (4)如圖2,連結(jié)PC,并把PQC沿AC翻折,得到四邊形PQP'C,那么是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在求出此時(shí)t的值;若不存在,說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,ABC中,ACBDC,=,EAB的中點(diǎn),tanD=2,CE=1,求sinECBAD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,AB、AC是圓O的兩條弦,AB=AC,過圓心O作OHAC于點(diǎn)H.

          (1)如圖1,求證:B=C;

          (2)如圖2,當(dāng)H、O、B三點(diǎn)在一條直線上時(shí),求BAC的度數(shù);

          (3)如圖3,在(2)的條件下,點(diǎn)E為劣弧BC上一點(diǎn),CE=6,CH=7,連接BC、OE交于點(diǎn)D,求BE的長和的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案