日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABC中,ACBC,ACB90°,過(guò)點(diǎn)CCDAB于點(diǎn)D,點(diǎn)EAB邊上一動(dòng)點(diǎn)(不含端點(diǎn)A,B),連接CE,過(guò)點(diǎn)BCE的垂線交直線CE于點(diǎn)F,交直線CD于點(diǎn)G

          (1)求證:AECG

          (2)若點(diǎn)E運(yùn)動(dòng)到線段BD上時(shí)(如圖②),試猜想AE,CG的數(shù)量關(guān)系是否發(fā)生變化,請(qǐng)證明你的結(jié)論;

          (3)過(guò)點(diǎn)AAHCE,垂足為點(diǎn)H,并交CD的延長(zhǎng)線于點(diǎn)M(如圖③),找出圖中與BE相等的線段,直接寫(xiě)出答案BE=

          【答案】1)詳見(jiàn)解析;(2)不變,AECG詳見(jiàn)解析;(3CM

          【解析】

          1)如圖,根據(jù)等腰直角三角形的性質(zhì)可以得出∠BCD=∠ACD45°,根據(jù)直角三角形的三角形的性質(zhì)就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出結(jié)論;

          2)如圖,根據(jù)等腰直角三角形的性質(zhì)可以得出∠BCD=∠ACD45°,根據(jù)直角三角形的三角形的性質(zhì)就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出結(jié)論;

          3)如圖,根據(jù)等腰直角三角形的性質(zhì)可以得出∠BCD=∠ACD45°,根據(jù)直角三角形的三角形的性質(zhì)就可以得出∠BCE=∠CAM,由ASA就可以得出△BCE≌△CAM,就可以得出結(jié)論.

          (1)證明:∵ACBC

          ABCCAB

          ACB90°,

          ∴∠ABCA45°,ACEBCE90°

          BFCE

          ∴∠BFC90°,

          ∴∠CBFBCE90°,

          ∴∠ACECBF

          CDAB,ABCA45°,

          ∴∠BCDACD45°,

          ∴∠ABCD

          BCGCAE中,

          ∴△BCG≌△CAE(ASA),

          AECG

          2)解:不變,AECG

          理由如下:

          ACBC

          ∴∠ABCA

          ∵∠ACB90°,

          ∴∠ABCA45°ACEBCE90°

          BFCE,

          ∴∠BFC90°

          ∴∠CBFBCE90°,

          ∴∠ACECBF

          CDABABCA45°,

          ∴∠BCDACD45°

          ∴∠ABCD

          BCGCAE中,

          ∴△BCG≌△CAE(ASA),

          AECG

          3BECM,

          理由如下:∵ACBC

          ∴∠ABC=∠CAB

          ∵∠ACB90°,

          ∴∠ABC=∠A45°,∠ACE+BCE90°.

          AHCE,

          ∴∠AHC90°,

          ∴∠HAC+ACE90°,

          ∴∠BCE=∠HAC

          ∵在RTABC中,CDABACBC,

          ∴∠BCD=∠ACD45°

          ∴∠ACD=∠ABC

          在△BCE和△CAM

          ∴△BCE≌△CAMASA),

          BECM

          故答案為:CM

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,一動(dòng)點(diǎn)從半徑為2的⊙O上的A0點(diǎn)出發(fā),沿著射線A0O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A1處,再向左沿著與射線A1O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A2處;接著又從A2點(diǎn)出發(fā),沿著射線A2O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A3處,再向左沿著與射線A3O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A4處;按此規(guī)律運(yùn)動(dòng)到點(diǎn)A2018處,則點(diǎn)A2018與點(diǎn)A0間的距離是( 。

          A. 0 B. 2 C. D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).

          (1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

          (2)判斷△ABC的形狀,證明你的結(jié)論;

          (3)點(diǎn)M是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△DCM的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,A(a,0),C(0c)且滿足:(a+6)2+0,長(zhǎng)方形ABCO在坐標(biāo)系中(如圖),點(diǎn)O為坐標(biāo)系的原點(diǎn).

          (1)求點(diǎn)B的坐標(biāo).

          (2)如圖1,若點(diǎn)M從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng)(不超過(guò)點(diǎn)O),點(diǎn)N從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度向下運(yùn)動(dòng)(不超過(guò)點(diǎn)C),設(shè)M、N兩點(diǎn)同時(shí)出發(fā),在它們運(yùn)動(dòng)的過(guò)程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.

          (3)如圖2,Ex軸負(fù)半軸上一點(diǎn),且∠CBE=∠CEB,Fx軸正半軸上一動(dòng)點(diǎn),∠ECF的平分線CDBE的延長(zhǎng)線于點(diǎn)D,在點(diǎn)F運(yùn)動(dòng)的過(guò)程中,請(qǐng)?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系,并說(shuō)明理由

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為保護(hù)環(huán)境,我市公交公司計(jì)劃購(gòu)買(mǎi)A型和B型兩種環(huán)保節(jié)能公交車(chē)共10輛.若購(gòu)買(mǎi)A型公交車(chē)1輛,B型公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型公交車(chē)2輛,B型公交車(chē)1輛,共需350萬(wàn)元.

          (1)求購(gòu)買(mǎi)A型和B型公交車(chē)每輛各需多少萬(wàn)元?

          (2)預(yù)計(jì)在某線路上A型和B型公交車(chē)每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保這10輛公交車(chē)在該線路的年均載客總和不少于680萬(wàn)人次,則該公司有哪幾種購(gòu)車(chē)方案?

          (3)在(2)的條件下,哪種購(gòu)車(chē)方案總費(fèi)用最少?最少總費(fèi)用是多少萬(wàn)元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,,的平分線與的平分線交于點(diǎn),則的度數(shù)是________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四邊形ABCD中,AB=DC,E、F分別是AD、BC的中點(diǎn),G、H分別是對(duì)角線BD、AC的中點(diǎn).

          (1)求證:四邊形EGFH是菱形;

          (2)若AB=1,則當(dāng)ABC+DCB=90°時(shí),求四邊形EGFH的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在8×8的網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,線段交點(diǎn)稱作格點(diǎn).任意連接這些格點(diǎn),可得到一些線段.按要求作圖:

          (1)請(qǐng)畫(huà)出ABC的高AD;

          (2)請(qǐng)連接格點(diǎn),用一條線段將圖中ABC分成面積相等的兩部分;

          (3)直接寫(xiě)出ABC的面積是_____________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】【探究函數(shù)yx的圖象與性質(zhì)】

          (1)函數(shù)yx的自變量x的取值范圍是________;

          (2)下列四個(gè)函數(shù)圖象中,函數(shù)yx的圖象大致是________;

          (3)對(duì)于函數(shù)yx,求當(dāng)x>0時(shí),y的取值范圍.請(qǐng)將下列的求解過(guò)程補(bǔ)充完整.

          解:∵x>0,∴yx=()2+________.

          ≥0,∴y≥________.

          【拓展運(yùn)用】

          (4)若函數(shù)y,求y的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案