日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,AD平分∠MAN,BD⊥AM,CD⊥AN,垂足分別為B、C,E為線段AB上一點(diǎn),
          (1)用尺規(guī)在射線AN上找一點(diǎn)F,使△CDF與△BDE全等(保留作圖痕跡);
          (2)若BE=3,請(qǐng)寫出此時(shí)線段AE與AF的數(shù)量關(guān)系,并說明理由.
          分析:(1)以D為圓心,DE為半徑交AN于F1或F2,根據(jù)角平分線定理得到DB=DC,再根據(jù)“HL”可證明Rt△CDF≌Rt△BDE;
          (2)先根據(jù)“HL”可證明Rt△DBA≌Rt△DCA得到AB=AC,然后討論:當(dāng)F點(diǎn)在F1時(shí),AF=AE;當(dāng)F點(diǎn)在F2時(shí),AF2=AC+CF2=AB+CF2=AE+BE+BE,AF-AE=2BE=6.
          解答:解:(1)以D為圓心,DE為半徑交AN于F1或F2,如圖,
          ∵AD平分∠MAN,BD⊥AM,CD⊥AN,
          ∴DB=DC,
          ∵DE=DF,
          ∴Rt△CDF≌Rt△BDE(HL);

          (2)∵DB=DC,DA=DA,
          ∴Rt△DBA≌Rt△DCA(HL);
          ∴AB=AC,
          ∵Rt△CDF≌Rt△BDE,
          ∴BE=CF,
          ∴當(dāng)F點(diǎn)在F1時(shí),AF=AE;
          當(dāng)F點(diǎn)在F2時(shí),AF2=AC+CF2=AB+CF2=AE+BE+BE,
          ∴AF-AE=2BE=6.
          點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì):判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對(duì)應(yīng)邊相等.也考查了角平分線定理.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          19、已知:如圖所示,直線MA∥NB,∠MAB與∠NBA的平分線交于點(diǎn)C,過點(diǎn)C作一條直線l與兩條直線MA、NB分別相交于點(diǎn)D、E.

          (1)如圖1所示,當(dāng)直線l與直線MA垂直時(shí),猜想線段AD、BE、AB之間的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論,不用證明;
          (2)如圖2所示,當(dāng)直線l與直線MA不垂直且交點(diǎn)D、E都在AB的同側(cè)時(shí),(1)中的結(jié)論是否成立?如果成立,請(qǐng)證明:如果不成立,請(qǐng)說明理由;
          (3)當(dāng)直線l與直線MA不垂直且交點(diǎn)D、E在AB的異側(cè)時(shí),(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)說明理由;如果不成立,那么線段AD、BE、AB之間還存在某種數(shù)量關(guān)系嗎?如果存在,請(qǐng)直接寫出它們之間的數(shù)量關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知四邊形ABCD中,AB=AD=8,∠A=∠B=90°.E為AB上一點(diǎn),且DE⊥DC,DF平分∠EDC交BC于F.
          (1)請(qǐng)用尺規(guī)作圖作出DF,保留作圖痕跡,不要求寫作法;
          (2)連EF,若tan∠ADE=
          1
          4
          ,求EF的長;
          (3)在(2)的條件下,作DG⊥BC于G,連接AG,交DE于M,則MA的長為
          8
          5
          2
          8
          5
          2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年湖北省武漢市黃陂區(qū)北片中考數(shù)學(xué)模擬試卷(3月份)(解析版) 題型:解答題

          如圖,已知四邊形ABCD中,AB=AD=8,∠A=∠B=90°.E為AB上一點(diǎn),且DE⊥DC,DF平分∠EDC交BC于F.
          (1)請(qǐng)用尺規(guī)作圖作出DF,保留作圖痕跡,不要求寫作法;
          (2)連EF,若tan∠ADE=,求EF的長;
          (3)在(2)的條件下,作DG⊥BC于G,連接AG,交DE于M,則MA的長為______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

          (2009•撫順)已知:如圖所示,直線MA∥NB,∠MAB與∠NBA的平分線交于點(diǎn)C,過點(diǎn)C作一條直線l與兩條直線MA、NB分別相交于點(diǎn)D、E.

          (1)如圖1所示,當(dāng)直線l與直線MA垂直時(shí),猜想線段AD、BE、AB之間的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論,不用證明;
          (2)如圖2所示,當(dāng)直線l與直線MA不垂直且交點(diǎn)D、E都在AB的同側(cè)時(shí),(1)中的結(jié)論是否成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說明理由;
          (3)當(dāng)直線l與直線MA不垂直且交點(diǎn)D、E在AB的異側(cè)時(shí),(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)說明理由;如果不成立,那么線段AD、BE、AB之間還存在某種數(shù)量關(guān)系嗎?如果存在,請(qǐng)直接寫出它們之間的數(shù)量關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《相交線與平行線》(03)(解析版) 題型:解答題

          (2009•撫順)已知:如圖所示,直線MA∥NB,∠MAB與∠NBA的平分線交于點(diǎn)C,過點(diǎn)C作一條直線l與兩條直線MA、NB分別相交于點(diǎn)D、E.

          (1)如圖1所示,當(dāng)直線l與直線MA垂直時(shí),猜想線段AD、BE、AB之間的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論,不用證明;
          (2)如圖2所示,當(dāng)直線l與直線MA不垂直且交點(diǎn)D、E都在AB的同側(cè)時(shí),(1)中的結(jié)論是否成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說明理由;
          (3)當(dāng)直線l與直線MA不垂直且交點(diǎn)D、E在AB的異側(cè)時(shí),(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)說明理由;如果不成立,那么線段AD、BE、AB之間還存在某種數(shù)量關(guān)系嗎?如果存在,請(qǐng)直接寫出它們之間的數(shù)量關(guān)系.

          查看答案和解析>>