日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】用一條直線截三角形的兩邊,若所截得的四邊形對(duì)角互補(bǔ),則稱該直線為三角形第三條邊上的逆平行線.如圖1,DEABC的截線,截得四邊形BCED,若∠BDE+C=180°,則稱DEABCBC的逆平行線.如圖2,已知ABC中,AB=AC,過(guò)邊AB上的點(diǎn)DDEBCAC于點(diǎn)E,過(guò)點(diǎn)E作邊AB的逆平行線EF,交邊BC于點(diǎn)F

          1)求證:DE是邊BC的逆平行線.

          2)點(diǎn)OABC的外心,連接CO.求證:COFE

          3)已知AB=5,BC=6,過(guò)點(diǎn)F作邊AC的逆平行線FG,交邊AB于點(diǎn)G

          ①試探索AD為何值時(shí),四邊形AGFE的面積最大,并求出最大值;

          ②在①的條件下,比較AD+BG______AB大小關(guān)系.(<、>或=”

          【答案】1)見解析;(2)見解析;(3)①當(dāng)AD=,四邊形有最大值,最大值為,②=

          【解析】

          1)根據(jù)題干條件可證得∠B=∠ACB,則∠BDE+∠B=180°,∠BDE+∠ACB=180°,結(jié)論得證;

          2)連接AO,證得∠FEC=∠B,由OA=OC可得∠OAC=∠OCA,∠BAO=∠OAC,證出∠FEC+∠ACB=90°,即CO⊥FE

          3由題意設(shè)FC=x,則BF=6-x,證△FEC∽△ABC,可得,同理可得,四邊形AGFE的面積可表示為SABC-SEFC-SBFG,利用二次函數(shù)的性質(zhì)可求出最大值;

          知點(diǎn)FBC的中點(diǎn),連接DF,根據(jù)EFAB邊的逆平行線,可證得DFAC邊的逆平行線,則G點(diǎn)與D點(diǎn)重合,則AD+BG=AB

          解:(1)證明:

          ∵AB=AC,

          ∴∠B=∠ACB

          ∵DE∥BC,

          ∴∠BDE+∠B=180°,∠BDE+∠ACB=180°

          ∴DE是邊BC的逆平行線.

          2)證明:如圖,連接AO,

          ∵EF是邊BA的逆平行線,

          ∴∠AEF+∠B=180°

          ∵∠AEF+∠FEC=180°,

          ∴∠FEC=∠B

          點(diǎn)O△ABC的外心,

          ∴OA=OCOA平分∠BAC,

          ∴∠OAC=∠OCA∠BAO=∠OAC,

          ∵∠BAO+∠B=90°,

          ∴∠FEC+∠ACB=90°,

          ∴CO⊥FE.

          3設(shè)FC=x,BF=6-x,S四邊形AGFE=y,

          ∵∠FEC=∠B,∠FCE=∠ACB

          ∴△FEC∽△ABC

          ,

          ,

          同理可得SBFG=

          ∴y=SABC-SEFC-SBFG=12-=-

          當(dāng)x=3時(shí),有AD=,此時(shí)y有最大值,最大值為

          的條件下CF=BF=3,如圖,連接DF,

          ∵BF=CF∠B=∠C,BD=CE

          ∴△BDF≌△CEFSAS),

          ∴∠BDF=∠CEF∠BFD=∠EFC,

          ∴∠BFE=∠DFC,∠AEF=∠ADF

          ∵∠AEF+∠B=180°,∠A+∠BFE=180°,

          ∴∠C+∠ADF=180°∠A+∠DFC=180°

          ∴FD為邊AC的逆平行線,

          由題意可知DG點(diǎn)重合,

          ∴AD+BG=AB,

          故答案為:=

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,平行四邊形ABCD中,對(duì)角線AC,BD交于O,EOAC.

          (1)若ABE的周長(zhǎng)為10cm,求平行四邊形ABCD的周長(zhǎng);

          (2)若ABC=78°,AE平分BAC,試求DAC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列事件是必然事件的是(

          A.拋擲一枚硬幣四次,有兩次正面朝上B.射擊運(yùn)動(dòng)員射擊一次,命中十環(huán)

          C.打開電視頻道,正在播放《奔跑吧,兄弟》D.方程必有實(shí)數(shù)根

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在研究相似問(wèn)題時(shí),甲、乙同學(xué)的觀點(diǎn)如下:

          甲:將邊長(zhǎng)為3、4、5的三角形按圖1的方式向外擴(kuò)張,得到新三角形,它們的對(duì)應(yīng)邊間距為1,則新三角形與原三角形相似.

          乙:將鄰邊為3和5的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對(duì)應(yīng)邊間距均為1,則新矩形與原矩形相似.

          對(duì)于兩人的觀點(diǎn),下列說(shuō)法正確的是(

          A.甲對(duì),乙不對(duì) B.甲不對(duì),乙對(duì) C.兩人都對(duì) D.兩人都不對(duì)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的最大公里數(shù)(單位:km/L),如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列敘述正確的是( 。

          A. 以相同速度行駛相同路程,甲車消耗汽油最多

          B. 10km/h的速度行駛時(shí),消耗1升汽油,甲車最少行駛5千米

          C. 以低于80km/h的速度行駛時(shí),行駛相同路程,丙車消耗汽油最少

          D. 以高于80km/h的速度行駛時(shí),行駛相同路程,丙車比乙車省油

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知關(guān)于x的一元二次方程x2-2x+m-1=0

          1)若此方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;

          2)當(dāng)RtABC的斜邊長(zhǎng)c=,且兩直角邊ab恰好是這個(gè)方程的兩個(gè)根時(shí),求RtABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直線yx+3分別與x軸,y軸交于點(diǎn)A、點(diǎn)B,拋物線y=x2+2x2y軸交于點(diǎn)C,點(diǎn)E在拋物線y=x2+2x2的對(duì)稱軸上移動(dòng),點(diǎn)F在直線AB上移動(dòng),CE+EF的最小值是( 。

          A.4B.4.6C.5.2D.5.6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線互相垂直,垂足為D,AB,DC的延長(zhǎng)線交于點(diǎn)E.

          (1)求證:AC平分∠DAB;

          (2)BE=3,CE=3,求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線yax2+bx+3x軸交于A(﹣3,0),Bl,0)兩點(diǎn),與y軸交于點(diǎn)C

          1)求拋物線的解析式;

          2)點(diǎn)P是拋物線上的動(dòng)點(diǎn),且滿足SPAO2SPCO,求出P點(diǎn)的坐標(biāo);

          3)連接BC,點(diǎn)Ex軸一動(dòng)點(diǎn),點(diǎn)F是拋物線上一動(dòng)點(diǎn),若以B、CE、F為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)F的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案