日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,正方形ABCD中,E是BD上一點,AE的延長線交CD于F,交BC的延長線于N,過點C作CM⊥CE,交FN于點M,
          (1)求證:△ADE≌△CDE;
          (2)求證:∠N=∠2;FM=MC=MN;
          (3)試問當(dāng)∠1等于多少度時,△ECN為等腰三角形?請說明理由.
          【答案】分析:(1)正方形是軸對稱圖形,本題把直線DB看作對稱軸,用軸對稱方法可證:△ADE≌△CDE;
          (2)利用(1)及平行線可推出∠N=∠1,利用互余關(guān)系推出∠N=∠MCN,∠MFC=∠MCF,可得MC=MF=MN.
          (3)根據(jù)三角形內(nèi)角和定理可求∠1=30°.
          解答:(1)證明:∵四邊形ABCD為正方形,
          且BD為對角線,
          ∴AD=DC,∠ADB=∠CDB.
          又∵DE=DE,
          ∴△ADE≌△CDE.

          (2)證明:由△ADE≌△CDE得∠1=∠2,
          由AD∥BC得∠1=∠N,
          ∴∠2=∠N.
          ∵∠MCN+∠MCF=∠MCF+∠2=90°,∠2=∠N,
          ∴∠N=∠MCN,
          同理可得出:∠MFC=∠MCF,
          ∴MC=MF=MN.

          (3)解:當(dāng)∠1=30°.
          理由:∵CE=CN,
          ∴∠CEN=∠N=∠1=∠2=x,
          在△CEN中,
          由內(nèi)角和定理得:x+x+90°+x=180°,
          x=30°.
          點評:本題綜合考查了利用正方形的性質(zhì)和全等三角形的判定的知識進(jìn)行有關(guān)計算的能力,解答這類題時一般采取利用圖形的全等的知識將分散的圖形集中在一起,再結(jié)合圖形的特征選擇相應(yīng)的公式求解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
          2
          cm,則△AEC面積為
           
          cm2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是( 。
          A、1B、2C、3D、4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
          16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
          (1)若ED:DC=1:2,EF=12,試求DG的長.
          (2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案